A configurable analog VLSI neural network with spiking neurons and self-regulating plastic synapses

نویسندگان

  • Massimiliano Giulioni
  • Mario Pannunzi
  • Davide Badoni
  • Vittorio Dante
  • Paolo Del Giudice
چکیده

We summarize the implementation of an analog VLSI chip hosting a network of 32 integrate-and-fire (IF) neurons with spike-frequency adaptation and 2,048 Hebbian plastic bistable spike-driven stochastic synapses endowed with a selfregulating mechanism which stops unnecessary synaptic changes. The synaptic matrix can be flexibly configured and provides both recurrent and AER-based connectivity with external, AER compliant devices. We demonstrate the ability of the network to efficiently classify overlapping patterns, thanks to the self-regulating mechanism.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A configurable analog VLSI neural network with spiking neurons and self-regulating plastic synapses which classifies overlapping patterns

We summarize the implementation of an analog VLSI chip hosting a network of 32 integrate-and-fire (IF) neurons with spike-frequency adaptation and 2,048 Hebbian plastic bistable spike-driven stochastic synapses endowed with a selfregulating mechanism which stops unnecessary synaptic changes. The synaptic matrix can be flexibly configured and provides both recurrent and AER-based connectivity wi...

متن کامل

Classification of Correlated Patterns with a Configurable Analog VLSI Neural Network of Spiking Neurons and Self-Regulating Plastic Synapses

We describe the implementation and illustrate the learning performance of an analog VLSI network of 32 integrate-and-fire neurons with spike-frequency adaptation and 2016 Hebbian bistable spike-driven stochastic synapses, endowed with a self-regulating plasticity mechanism, which avoids unnecessary synaptic changes. The synaptic matrix can be flexibly configured and provides both recurrent and ...

متن کامل

Analog VLSI spiking neural network with address domain probabilistic synapses

We present an analog VLSI address-event transceiver containing an array of integrate-and-fire neurons and a scheme for implementing a reconfigurable, scalable neural network with probabilistic synapses in the address domain. Neural “spikes” are transmitted through address-event representation, in which the address of the sending neuron is communicated through an asynchronous request and acknowl...

متن کامل

Mapping Complex, Large – Scale Spiking Networks on Neural VLSI

Traditionally, VLSI implementations of spiking neural nets have featured large neuron counts for fixed computations or small exploratory, configurable nets. This paper presents the system architecture of a large configurable neural net system employing a dedicated mapping algorithm for projecting the targeted biology-analog nets and dynamics onto the hardware with its attendant constraints. Key...

متن کامل

A VLSI network of spiking neurons with plastic fully configurable "stop-learning" synapses

We describe and demonstrate a neuromorphic, analog VLSI chip (termed F-LANN) hosting 128 integrate-andfire (IF) neurons with spike-frequency adaptation, and 16,384 plastic bistable synapses implementing a self-regulated form of Hebbian, spike-driven, stochastic plasticity. The chip is designed to offer a high degree of reconfigurability: each synapse may be individually configured at any time t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007